HYDRODYNAMICS OF A POINT VORTEX RING

V. I. Korobko and I. V. Chekh

UDC 538.517 .4

The kinematics and dynamics of a point vortex ring in an incompressible fluid and its interaction with a surface are considered.

In [1], a circular vortex with a zero fluid velocity on its axis is studied. The axis of the vortex is a circle of radius R, around which the fluid motion occurs. In the present article this circle is assumed to be a closed vortex filament with infinite circulation. In this case, when any other fluid flow is superposed on the circular vortex, its axis, unlike [1], does not change its position in space, thus allowing extension of the range of imposed flows.

A solution of the problem is obtained in a toroidal coordinate system $(\sigma, r, \varphi)[2]$.
Kinematics of Vortex Ring. The statement of the problem of a toroidai vortex is given in [1]. In the case of a point vortex the boundary conditions on the vortex axis have the form

$$
\begin{equation*}
V_{\sigma} \rightarrow \infty \quad \text { when } \quad \tau \rightarrow \infty \tag{I}
\end{equation*}
$$

By integrating the continuity equation, we obtain the following expression for the velocity:

$$
\begin{equation*}
V_{\sigma}=c(\tau)(\operatorname{ch} \tau-\cos \sigma)^{2} \tag{2}
\end{equation*}
$$

Let us consider a particular case that satisfies condition (1):c=c(r)=c$=c o n s t$. According to the boundary condition at the symmetry point of the torus

$$
V_{o}=V_{0}=\text { const } \quad \text { when } \quad \sigma= \pm \pi, \quad \tau \rightarrow 0
$$

from Eq. (2) we obtain $c_{1}=V_{0} / 4$. We now write expression (2) in cylindrical coordinates $(z, y, \varphi)[1,2]$:

$$
V_{\sigma}=\frac{V_{0} a^{4}}{\left((y-a)^{2}+z^{2}\right)\left((y+a)^{2}+z^{2}\right)}
$$

In projection onto the axis of the coordinates we obtain:

$$
\begin{gather*}
U_{z}=\frac{V_{0} a^{4}\left(y^{2}-a^{2}-z^{2}\right)}{\left|\left((y-a)^{2}+z^{2}\right)\left((y+a)^{2}+z^{2}\right)\right|^{3 / 2}}, \tag{3}\\
U_{y}=-\frac{V_{0} a^{4} 2 y z}{\left|\left((y-a)^{2}+z^{2}\right)\left((y+a)^{2}+z^{2}\right)\right|^{3 / 2}}, \tag{4}
\end{gather*}
$$

hence, upon integration of the equations $U_{y}=-(1 / y) \cdot\left(\partial \Psi_{0} / \partial z\right)$ and $U_{z}=(1 / y) \cdot\left(a \Psi_{0} / d y\right)$, we write the expression for the stream function

$$
\begin{equation*}
\Psi_{0}=-\frac{V_{0} a^{2}\left(z^{2}+y^{2}+a^{2}\right)}{4 \sqrt{\left((y-a)^{2}+z^{2}\right)\left((y+a)^{2}+z^{2}\right)}} \tag{5}
\end{equation*}
$$

Polotsk State University, Novopolotsk, Belarus. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 69, No. 1, pp. 118-122, January-February, 1996. Original article submitted June 13, 1994.

Fig. 1. Variation of velocity U_{z} / V_{0} along the coordinate axes: 1) along z / a axis; 2) along the y / a axis.

Fig. 2. Distribution of streamlines Ψ_{*} in flow around vortex ring; a) $k=0.8$:

1) $\Psi_{*}=-0.325 ; 2-0.25 ; 3-0.2$; b) $k=1$: 1) $\Psi_{*}=-0.5$; 2) -0.25 ; 3) -0 ;
c) $k=1.5$; 1) $\left.\Psi_{*}=-1 ; 2\right)-0.2247$; 3) -0.2375 ; 4) -0.25 ; 5) 0.325 .

Vortex Ring in Uniform Rectilinear Flow. As a result of superposition of the stream functions of a toroidal vortex Ψ_{0} and of a rectilinear flow $\Psi_{1}=V_{1} y^{2} / 2$ [1], we have $\Psi=\Psi_{0}+\Psi_{1}$ or in dimensionless form (using the notation $z=z / a, y=y / a)$,

$$
\Psi_{*}=\frac{\Psi}{V_{0} a^{2}}=k \frac{y^{2}}{2}-\frac{z^{2}+y^{2}+1}{4 \sqrt{\left((y-a)^{2}+z^{2}\right)\left((y+a)^{2}+z^{2}\right)}} .
$$

where $k=V_{1} / V_{0}$. Then we express the function $z=z\left(y, k, \Psi_{*}\right)$ and obtain an equation for the trajectorics of the fluid particles

$$
\begin{equation*}
z=\left[\frac{2 y}{\sqrt{1-\left(2 k y^{2}-44^{\prime}\right)^{-2}}}-y^{2}-1\right]^{1 / 2} . \tag{6}
\end{equation*}
$$

Stationary Vortex in the Vicinity of an Impermeable Surface Perpendicular to the Vortex Symmetry Axis. Suppose a surface lies in the x0y plane. We consider two vortices with the same directions of circulation located as follows:

1) the axis of the first torus lies in the $z=h$ plane;
2) the axis of the second torus lies in the $z=-h$ plane,
which are described by the stream functions Ψ_{1} and Ψ_{2}, velocities $U_{z 1}, U_{z 2}, U_{y 1}$, and $U_{y 2}$, similarly to formulas (3)-(5). Only for the first torus should z be replaced by $z-h$, and for the second torus, by $z+h$. The addition If these two circular vortices at $z=0$ yields

Fig. 3. Distribution of streamlines Ψ_{*} near a plane: 1) $\left.\Psi_{*}=-0.25 ; 2\right)-0.05$; 3) -0.075 ; 4) -0 ; a) $h / a=2$; b) 0.5 .

$$
\begin{gather*}
U_{y 12}=U_{y 1}+U_{y 2}=0 \tag{7}\\
U_{z 12}=U_{z 1}+U_{z 2}=\frac{2 V_{0} a^{4}\left(y^{2}-a^{2}-h^{2}\right)}{\left[\left.\left((y-a)^{2}+h^{2}\right)\left((y+a)^{2}+h^{2}\right)\right|^{3 / 2}\right.} .
\end{gather*}
$$

Thus, in order to obtain an impermeable surface, it is necessary to add a third circular vortex with the axis located in the $z=0$ plane and with the velocity profile

$$
\begin{equation*}
U_{y 3}=0, \quad U_{z 3}=-U_{z 12} \quad \text { at } \quad z=0 \tag{8}
\end{equation*}
$$

Procceding from Eq. (7), we assume that

$$
U_{z 3}=-2 V_{0} a^{4} \frac{\left(y^{2}-a^{2}-h^{2}-z^{2}\right)}{\left|\left((y-a)^{2}+h^{2}+z^{2}\right)\left((y+a)^{2}+h^{2}+z^{2}\right)\right|^{3 / 2}},
$$

where $U_{z 3}=(1 / y) \cdot\left(\partial \Psi_{3} / \partial y\right)$. Then, integrating this expression and taking into account the formula for $U_{z 3}$, we have

$$
\begin{aligned}
& \Psi_{3}=V_{0} a^{2} \frac{y^{2}+h^{2}+a^{2}+z^{2}}{2 \sqrt{\left((y-a)^{2}+h^{2}+z^{2}\right)\left((y+a)^{2}+h^{2}+z^{2}\right)}} \\
& U_{y 3}=\frac{4 V_{0} a^{4} z y}{\left|\left((y-a)^{2}+h^{2}+z^{2}\right)\left((y+a)^{2}+h^{2}+z^{2}\right)\right|^{3 / 2}}
\end{aligned}
$$

We found that a stationary point vortex located near the surface at distance h is described by the following expressions:

$$
\begin{equation*}
\Psi=\Psi_{1}+\Psi_{2}+\Psi_{3}, \quad U_{z}=U_{z 1}+U_{z 2}+U_{z 3}, \quad U_{y}=U_{y 1}+U_{y 2}+U_{y 3} \tag{9}
\end{equation*}
$$

Results of Calculations. Figure 1 presents the results of calculation of the velocity profiles of a stationary vortex in space. (Curve 1 represents the velocity profile on the symmetry axis of the torus ($y=0$).) This velocity profile concides with the results of $[1]$ for a vortex with a zero velocity on the torus axis. Curves 2 represent the distribution of velocities at $z=0$. The calculations were performed by formula (3).

The results of the interaction of a circular vortex with a rectilinear flow are presented in Fig. 2 in the form of streamlines depending on the coefficient $k=V_{1}, V_{0}$. From Figs. $2 a$ and $2 b(k \leq 1)$ it follows that the flow has

Fig. 4. Variation of shear stresses on a plane along the y / a axis: 1$) ~ h / a=0.5$; 2) 1 .
two regions: an internal vortex region and a region of flow around the toroidal vortex. As the coefficient k increases, the critical points of the flow A and B come closer together and at $V_{1}=V_{0}(k=1)$ merge into one point 0 . A further increase in the coefficient k leads to the appearance of a third flow region: a fluid flow moving inside the circular vortex along the axis of its symmetry. This is shown in Fig. 2c, where K is the critical point ($V_{K}=0$). Thus, here, unlike [1], the flow velocity at infinity $U_{\infty}=V_{1}$ is not limited by the values $0<V_{1}<V_{0}$, i.e., in principle, we can consider a circular vortex moving with any velocity. The streamlines were calculated by formula (6).

The results of calculation by the first expression of system (9) for the streamlines of a stationary vortex near a solid surface at different distances from it are presented in Fig. 3.

Now, we estimate the distribution of the shear stress on a plane with liquid flow formed by a circular vortex located in the vicinity of the plane. According to the Newton law, we have

$$
\tau=\mu \frac{\partial U_{y}}{\partial z} \quad \text { at } \quad z=0 .
$$

The results of calculations in the form of the dependence of the dimensionless stresses $\tau u / \mu V_{0}$ on the radial coordinate y / a are given in Fig. 4. The dependence corresponding to the ratio $h / a=2$ is not shown, because the maximum value of shear stresses at this ratio is equal to 0.1 . It is seen from the figure that as the circular vortex approaches the plane, the shear stresses increase sharply. Thus, when the ratio h / a decreases by a factor of two, the value of $\tau a / \mu V_{0}$ increases by a factor of about ten. For circular vortices corresponding to Figs. 3a and 3 b the maximum shear stresses on the plane are equal to 11.6 and 1.3 , respectively.

NOTATION

σ, τ, φ, toroidal coordinates; $V\left(V_{U}, V_{\tau}, V_{\varphi}\right)$, velocity of fluid particle and its projection in toroidal coordinates; V_{0}, velocity at center of vortex ring on the axis of its symmetry; z, y, φ, cylindrical coordinates; u, distance from the torus axis to the axis of its symmetry $(0 z) ; U_{z}, U_{y}$, velocities in cylindrical coordinate system; Ψ_{0}, stream function of stationary vortex ring; $U_{\infty}=V_{1}$, velocity of rectilinear flow at infinity; Ψ_{1}, stream function of rectilinear flow; $\Psi=\Psi_{0}+\Psi_{1}$, superposition of two flows; $k=V_{1} / V_{0}$, cocfficient of the velocity ratio; $\Psi .=$ $\Psi / V_{0} a^{2}$, dimensionless stream function; h, distance from axis of circular vortex to the x $0 y$ plane; τ, shear stress; μ, cocfficient of dynamic viscosity.

REFERENCES

1. V. I. Korobko and I. V. Chekh, Inzh.-Fiz. Zh., 68, No. 4, $531-536$ (1995).
2. G. Korn and T. Korn, Handbook of Mathematics for Scientists and Engineers, McGraw-Hill, New York (1968).
